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Introduction

This book consists of lecture notes for a course given at the EMS Summer School
on Noncommutative Geometry and Applications, at Monsaraz and Lisboa, Portugal
in September, 1997. These were made available in preprint form on the ArXiv, as
physics/9709045, at that time. In updating them for publication, I have kept to the
original plan, but have added citations of more recent papers throughout. An extra
final chapter summarizes some of the developments in noncommutative geometry in
the intervening years.

The course sought to address a mixed audience of students and young researchers,
both mathematicians and physicists, and to provide a gateway to noncommutative
geometry, as it then stood. It already occupied a wide-ranging area of mathematics,
and had received some scrutiny from particle physicists. Shortly thereafter, links to
string theory were found, and its interest for theoretical physicists is now indisputable.

Many approaches can be taken to introducing noncommutative geometry. In these
lectures, the focus is on the geometry of Riemannian spin manifolds and their noncom-
mutative cousins, which are ‘spectral triples’ determined by a suitable generalization
of the Dirac operator. These ‘spin geometries’, which are spectral triples with certain
extra properties, underlie the noncommutative geometry approach to phenomenologi-
cal particle models and recent attempts to place gravity and matter fields on the same
geometrical footing.

The first two chapters are devoted to commutative geometry; we set up the general
framework and then compute a simple example, the two-sphere, in noncommutative
terms. The general definition of a spin geometry is then laid out and exemplified
with the noncommutative torus. Enough details are given so that one can see clearly
that noncommutative geometry is just ordinary geometry, extended by discarding the
commutativity assumption on the coordinate algebra. Classification up to equivalence
is dealt with briefly in Chapter 7.

Other chapters explore some of the tools of the trade: the noncommutative integral,
the role of quantization, and the spectral action functional. Physical models are not
treated directly (these were the subject of other lectures at the Summer School), but
most of the mathematical issues needed for their understanding are dealt with here.
The final chapter is a brief overview of the profusion of new examples and applications
of noncommutative spaces and spectral triples.

I wish to thank several people who contributed in no small way to assembling these
lecture notes. José M. Gracia-Bondía gave decisive help at many points; and Alejandro
Rivero provided constructive criticism. I thank Daniel Kastler, Bruno Iochum, Thomas
Schücker and the late Daniel Testard for the opportunity to visit the Centre de Physique
Théorique of the CNRS at Marseille, as a prelude to the Summer School; and Piotr
M. Hajac for an invitation to teach at the University of Warsaw, when I rewrote the
notes for publication. This visit to Katedra Metod Matematycznych Fizyki of UW was
supported by European Commission grant MKTD–CT–2004–509794.
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1

Commutative geometry from the noncommutative
point of view

The traditional arena of geometry and topology is a set of points with some particular
structure that, for want of a better name, we call a space. Thus, for instance, one studies
curves and surfaces as subsets of an ambient Euclidean space. It was recognized early
on, however, that even such a fundamental geometrical object as an elliptic curve is
best studied not as a set of points (a torus) but rather by examining functions on this
set, specifically the doubly periodic meromorphic functions. Weierstrass opened up
a new approach to geometry by studying directly the collection of complex functions
that satisfy an algebraic addition theorem, and derived the point set as a consequence.
In probability theory, the set of outcomes of an experiment forms a measure space, and
one may regard events as subsets of outcomes; but most of the information is obtained
from ‘random variables’, i.e., measurable functions on the space of outcomes.

In noncommutative geometry, under the influence of quantum physics, this general
idea of replacing sets of points by classes of functions is taken further. In many cases
the set is completely determined by an algebra of functions, so one forgets about the
set and obtains all information from the functions alone. Also, in many geometrical
situations the associated set is very pathological, and a direct examination yields no
useful information. The set of orbits of a group action, such as the rotation of a circle
by multiples of an irrational angle, is of this type. In such cases, when we examine
the matter from the algebraic point of view, we often obtain a perfectly good operator
algebra that holds the information we need; however, this algebra is generally not
commutative. Thus, we proceed by first discovering how function algebras determine
the structure of point sets, and then learning which relevant properties of function
algebras do not depend on commutativity.

In a famous paper [94] that has become a cornerstone of noncommutative geo-
metry, Gelfand and Naı̆mark in 1943 characterized the involutive algebras of operators
by just dropping commutativity from the most natural axiomatization for the algebra
of continuous functions on a locally compact Hausdorff space. The starting point
for noncommutative geometry that we adopt here is to study ordinary ‘commutative’
spaces via their algebras of functions, omitting wherever possible any reference to the
commutativity of these algebras.



2 1 Commutative geometry from the noncommutative point of view

1.1 The Gelfand–Naı̆mark cofunctors

The Gelfand–Naı̆mark theorem can be thought of as the construction of two contravari-
ant functors (cofunctors for short) from the category of locally compact Hausdorff
spaces to the category of C∗-algebras.

The first cofunctor C takes a compact space X to the C∗-algebra C(X) of contin-
uous complex-valued functions on X, and takes a continuous map f : X → Y to its
transpose Cf : C(Y ) → C(X), h �→ h � f . If X is only a locally compact space,
the corresponding C∗-algebra is C0(X) whose elements are continuous functions van-
ishing at infinity, and we require that the continuous maps f : X → Y be proper (the
preimage of a compact set is compact) in order that h �→ h �f take C0(Y ) into C0(X).

The other cofunctor M goes the other way: it takes a C∗-algebra A onto its space
of characters, that is, nonzero homomorphisms μ : A → C. If A is unital, M(A) is
closed in the weak* topology of the unit ball of the dual spaceA∗ and hence is compact.
If φ : A → B is a unital ∗-homomorphism, the cofunctor M takes φ to its transpose
Mφ : M(B)→ M(A), μ �→ μ � φ.

WriteX+ := X� {∞} for the spaceX with a point at infinity adjoined (whetherX
is compact or not), and write A+ := C × A for the C∗-algebra A with an identity
adjoined via the rule (λ, a)(μ, b) := (λμ, λb + μa + ab), whether A is unital or not;
then C(X+) � C0(X)

+ as unital C∗-algebras. If μ0 : A+ → C, (λ, a) �→ λ, then
M(A) = M(A+) \ {μ0} is locally compact when A is nonunital. Notice that M(A)+
andM(A+) are homeomorphic.

That no information is lost in passing from spaces to C∗-algebras can be seen as
follows. If x ∈ X, the evaluation f �→ f (x) defines a character εx inM(C(X)), and
the map εX : X → M(C(X)), x �→ εx is a homeomorphism. If a ∈ A, its Gelfand
transform â : M(A) → C, μ �→ μ(a) is a continuous function on M(A), and the
map G : A → C(M(A)), a �→ â is a ∗-isomorphism of C∗-algebras, that preserves
identities if A is unital. These maps are functorial (or ‘natural’) in the sense that the
following diagrams commute:

X
f−−−−→ Y

εX

⏐⏐� ⏐⏐�εY
M(C(X))

MCf−−−−→ M(C(Y ))

A
φ−−−−→ B

GA

⏐⏐� ⏐⏐�GB

C(M(A))
CMφ−−−−→ C(M(B))

For instance, given a unital ∗-homomorphism φ : A → B, then for any a ∈ A and
ν ∈ M(B), we get

((CMφ � GA)a)ν = ((CMφ)â)ν = â((Mφ)ν) = â(ν � φ)
= ν(φ(a)) = φ̂(a)(ν) = ((GB � φ)a)ν,

by unpacking the various transpositions.
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This ‘equivalence of categories’has several consequences. First of all, two commu-
tative C∗-algebras are isomorphic if and only if their character spaces are homeomor-
phic. (If φ : A→ B andψ : B → A are inverse ∗-isomorphisms, thenMφ : M(B)→
M(A) andMψ : M(A)→ M(B) are inverse continuous proper maps.)

Secondly, the group of automorphisms Aut(A) of a commutative C∗-algebra A is
isomorphic to the group of homeomorphisms of its character space. Note that, sinceA
is commutative, there are no nontrivial inner automorphisms in Aut(A).

Thirdly, the topology of X may be specified in terms of algebraic properties of
C0(X). For instance, any ideal of C0(X) is of the form C0(U) where U ⊆ X is an
open subset (the closed set X \ U being the zero set of this ideal).

If Y ⊆ X is a closed subset of a compact space X, with inclusion map j : Y → X,
then Cj : C(X) → C(Y ) is the restriction homomorphism (which is surjective, by
Tietze’s extension theorem). In general, f : Y → X is injective if and only if
Cf : C(X)→ C(Y ) is surjective.

We may summarize several properties of the Gelfand–Naı̆mark cofunctor with the
following dictionary, adapted from [221, p. 24]:

TOPOLOGY ALGEBRA

locally compact space C∗-algebra

compact space unital C∗-algebra

compactification unitization

continuous proper map ∗-homomorphism

homeomorphism automorphism

open subset ideal

closed subset quotient algebra

metrizable separable

Baire measure positive linear functional

The C∗-algebra viewpoint also allows one to study the topology of non-Hausdorff
spaces, such as arise in probing a continuum where points are unresolved: see the book
by Landi on noncommutative spaces [138].

A commutativeC∗-algebra has an abundant supply of characters, one for each point
of the associated space. Looking ahead to noncommutative algebras, we can anticipate
that characters will be fairly scarce, and we need not bother to search for points. There
is, however, one role for points that survives in the noncommutative case: that of zero-
dimensional elements of a homological skeleton or cell decomposition of a topological
space. For that purpose, characters are not needed; we shall require functionals that
are only traces on the algebra, but are not necessarily multiplicative.
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1.2 The � functor

Continuous functions determine a space’s topology, but to do geometry we need at least
a differentiable structure. Thus we shall assume from now on that our ‘commutative
space’ is in fact a differential manifold M , of dimension n. For simplicity, we shall
usually assume that M is compact, even though this leaves aside important examples
such as Minkowski space. (It turns out that noncommutative geometry has been de-
veloped so far almost entirely in the Euclidean signature, where compactness can be
seen as a simplifying technical assumption. For the noncompact Euclidean case, see
Chapter 9. How to adapt the theory to deal with spaces with indefinite metric is still
an open problem, although there are by now several proposals available [133], [166],
[203].)

The C∗-algebra A = C(M) of continuous functions must then be replaced by the
algebra A = C∞(M) of smooth functions on the manifoldM . This is not aC∗-algebra,
and although it is a Fréchet algebra in its natural locally convex topology, our tactic is
to work with the dense subalgebra A ofA in a purely algebraic fashion. We think of A
as the subspace of ‘sufficiently regular’ elements of A: see Section 3.4.

A character of A is a distribution μ on M that is positive, since μ(a∗a) =
|μ(a)|2 ≥ 0, and as such is a measure [95] that extends to a character of C(M);
hence A also determines the point-spaceM .

To study a given compact manifold M , one uses the category of (complex) vector

bundles E
π−→M; its morphisms are bundle maps τ : E → E′ satisfying π ′ � τ = π

and so defining fibrewise maps τx : Ex → E′x (x ∈ M) that are required to be linear.

Given any vector bundle E
π−→M , write

�(E) := C∞(M,E)
for the space of smooth sections ofM . If τ : E→ E′ is a bundle map, the composition
�τ : �(E)→ �(E′), s �→ τ � s satisfies, for a ∈ A, x ∈ M ,

�τ(sa)(x) = τx(s(x)a(x)) = τx(s(x)) a(x) = (�τ(s)a)(x)
so�τ(sa) = �τ(s)a; that is,�τ : �(E)→ �(E′) is a morphism of (right) A-modules.
One may write either as or sa to denote the multiplication of a section s by a function a,
so �(E) can also be regarded as a left A-module, with appropriate changes of notation.

Vector bundles over M admit operations such as duality, direct sum (i.e., Whitney
sum) and tensor product; the �-functor carries these to analogous operations on A-
modules; for instance, if E, E′ are vector bundles overM , then

�(E ⊗ E′) � �(E)⊗A �(E
′),

where the right hand side is formed by finite sums
∑
j sj ⊗ s′j subject to the relations

sa ⊗ s′ − s ⊗ as′ = 0, for a ∈ A. One can show that any A-linear map from �(E) to
�(E′) is of the form �τ for a unique bundle map τ : E→ E′.
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It remains to identify the image of the �-functor. Note that if E = M × Cr is a
trivial bundle, then �(E) = Ar is a free A-module. SinceM is compact, we can find
nonnegative functions ψ1, . . . , ψq ∈ A with ψ2

1 + · · · + ψ2
q = 1 (a partition of unity)

such that E is trivial over the set Uj where ψj > 0, for each j . If fij : Ui ∩ Uj →
GL(r,C) are the transition functions forE, satisfyingfikfkj = fij onUi∩Uj∩Uk , then
the functions pij = ψifijψj (defined to be zero outside Ui ∩Uj ) satisfy

∑
k pikpkj =

pij , and so assemble into a qr×qr matrix p ∈ Mqr(A) such that p2 = p. A section in
�(E), given locally by smooth functions sj : Uj → Cr such that si = fij sj onUi ∩Uj ,
can be regarded as a column vector s = (ψ1s1, . . . , ψqsq)

t ∈ C∞(M)qr satisfying
ps = s. In this way, one identifies �(E) with pAqr .

The Serre–Swan theorem [205] says that this is a two-way street: if A = C∞(M),
then any right A-module of the form pAm, for an idempotent p ∈ Mm(A), is iso-
morphic to �(E) = C∞(M,E) for some vector bundle E. The fibre at the point
μ ∈ M = M(A) is the vector space pAm ⊗A (A/ kerμ) whose (finite) dimension is
the trace of the matrix μ(p) ∈ Mm(C).

In general, if A is any unital algebra, a right A-module of the form pAm is called
a finitely generated projective module. We summarize by saying that � is a (covariant)
functor from the category of vector bundles overM to the category of finitely generated
projective modules over C∞(M). The Serre–Swan theorem gives a recipe to construct
an inverse functor going the other way, so that these categories are equivalent. (See the
discussion by Brodzki [17], or Chapter 2 of [104], for more details in a modern style.)

What, then, is a noncommutative vector bundle? It is simply a finitely generated
projective right module E for a (not necessarily commutative) algebra A, which will
generally be a dense subalgebra of a C∗-algebra A.

1.3 Hermitian metrics and spinc structures

Any complex vector bundle can be endowed (in many ways) with a Hermitian metric.
The conventional practice is to define a positive definite sesquilinear form (· | ·)x on
each fibre Ex of the bundle, which must ‘vary smoothly with x’. The noncommutative
point of view is to eliminate x, and what remains is a pairing E × E → A on a finitely
generated projective right A-module with values in the algebra A that is A-linear in
the second variable, hermitian and positive definite. In symbols:

(r | s + t) = (r | s)+ (r | t),
(r | sa) = (r | s) a,
(r | s) = (s | r)∗,
(s | s) > 0 for s �= 0,

(1.1)

for r, s, t ∈ E , a ∈ A. Notice the consequence (rb | s) = b∗ (r | s) if b ∈ A.
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With this structure, E is called a pre-C∗-module or ‘prehilbert module’. More
precisely, a pre-C∗-module over a dense subalgebra A of a C∗-algebra A is a right A-
module E (not necessarily finitely generated or projective) with a pairing E × E → A
satisfying (1.1). One can complete it in the norm

|||s||| := √‖(s | s)‖
where ‖ · ‖ is the C∗-norm of A; the resulting Banach space is then a C∗-module. In
the case E = C∞(M,E), the completion is the Banach space of continuous sections
C(M,E). Indeed, in general this completion is not a Hilbert space. For instance, one
can take E = A itself, by defining (a | b) := a∗b; then |||a||| equals the C∗-norm ‖a‖,
so the completion is the C∗-algebra A.

The free A-module Am is a pre-C∗-module in the obvious way, namely (r | s) :=∑m
j=1 r

∗
j sj . This column-vector scalar product also works for pAm if p = p2 ∈

Mm(A), provided that p = p∗ also. If q = q2 ∈ Mm(A), one can always find a
projector p = p2 = p∗ inMm(A) that is similar and homotopic to q: see, for example,
[104, Thm. 3.8]. (The choice of p selects a particular Hermitian structure on the right
module qAm.) Thus we shall always assume from now on that the idempotent p is
also selfadjoint.

One can similarly study left A-modules. In fact, if E is any right A-module, the
conjugate space E is a left A-module: by writing E = {s : s ∈ E }, we can define
a s := (sa∗)−. For E = pAm, we get E = Amp where entries of Am are to be
regarded as ‘row vectors’.

Morita equivalence. Finitely generated projective A-modules with A-valued pair-
ings play a rôle in noncommutative geometry as mediating structures that is partially
hidden in commutative geometry: they allow the emergence of new algebras related,
but not isomorphic, to A. Consider the ‘ket-bra’ operators

|r〉〈s| : E → E , t �→ r (s | t), for r, s ∈ E . (1.2)

Composing two ket-bras yields a ket-bra:

|r〉〈s| · |t〉〈u| = |r(s | t)〉〈u| = |r〉〈u (t | s)|,
so all finite sums of ket-bras form an algebra B. Since r (s | ta) = r (s | t) a for a ∈ A,
ket-bras act ‘on the left’ on E and commute with the right action of A. If E = pAm,
then B = pMm(A) p. In this way, E becomes a ‘B-A-bimodule’.

If A is unital, one can regard B as E ⊗A E , by |r〉〈s| ↔ r ⊗ s. On the other hand,
we can form E ⊗B E , which is isomorphic to A as an A-bimodule via r ⊗ s ↔ (r | s).
This is an instance of Morita equivalence. In general, we say that two unital algebras
A, B are Morita-equivalent if there is a B-A-bimodule E and an A-B-bimodule F
such that

E ⊗A F � B, F ⊗B E � A, (1.3)
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as B-B- and A-A-bimodules respectively. With E = Am and F � Am, we see that
any full matrix algebra over A is Morita-equivalent to A; nontrivial projectors over A
offer a host of more ‘twisted’ examples of algebras that are equivalent to A in this
sense.

The importance of Morita equivalence of two algebras is that their representations
match. More precisely, suppose that there is a Morita equivalence of two algebras A
and B, implemented by a pair of bimodules E , F as in (1.3). Then the functors
H �→ E ⊗A H and H ′ �→ F ⊗B H ′ implement opposing correspondences between
representation spaces of A and B.

Moral: if we study an algebra A only through its representations, we must si-
multaneously study the various algebras Morita-equivalent to A. In particular, we
package together the commutative algebra C∞(M) and the noncommutative alge-
braMn(C∞(M)) for the purpose of doing geometry.

In the category of C∗-algebras (with or without unit element), one replaces finitely
generated projective modules by arbitrary C∗-modules and obtains a much richer the-
ory; see, for instance, [137], [181] and especially [175]. The notion analogous to (1.3)
is called ‘strong Morita equivalence’. In particular, let us note that two C∗-algebras A
and B are strongly Morita equivalent whenever A⊗K � B⊗K , where K is the ele-
mentary C∗-algebra of compact operators on a separable, infinite-dimensional Hilbert
space [19].

Spinc structures. Returning once more to ordinary manifolds, suppose thatM is an n-
dimensional orientable Riemannian manifold with a metric g on its tangent bundle TM .
We build a Clifford algebra bundle C
′(M)→ M whose fibres are full matrix algebras
(over C), as follows. If n is even, n = 2m, then C
′x(M) := C
(TxM, gx) ⊗R C �
M2m(C) is the complexified Clifford algebra over the tangent space TxM . If n is odd,
n = 2m+ 1, the analogous fibre splits asM2m(C)⊕M2m(C), so we take only the even
part of the complexified Clifford algebra: C
′x(M) := C
even(TxM)⊗R C � M2m(C).
The price we pay for this choice is that we lose the Z2-grading of the Clifford algebra
bundle in the odd-dimensional case.

What we gain is that in all cases, the bundle C
′(M) → M is a locally trivial
field of (finite-dimensional) elementary C∗-algebras. Such a field is classified, up to
equivalence, by a third-degree Čech cohomology class δ(C
′(M)) ∈ H 3(M,Z) called
the Dixmier–Douady class [67], [175]. Locally, one finds trivial bundles with fibres Sx
such that C
′x(M) � End(Sx); the class δ(C
′(M)) is precisely the obstruction to
patching them together (there is no obstruction to the existence of the algebra bundle
C
′(M)). It was shown by Plymen [171] that δ(C
′(M)) = W3(TM), the integral class
that is the obstruction to the existence of a spinc structure in the conventional sense of
a lifting of the structure group of TM from SO(n) to Spinc(n): see [149, Appendix D]
for more information onW3(TM).

ThusM admits spinc structures if and only if δ(C
′(M)) = 0. But in the Dixmier–
Douady theory, δ(C
′(M)) is the obstruction to constructing a B-A-bimodule S that
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implements a (strong) Morita equivalence between the C∗-algebras A = C0(M) and
B = C0(M,C


′(M)). Let us paraphrase Plymen’s redefinition of a spinc structure, in
the spirit of noncommutative geometry.

Definition1. LetM be a Riemannian manifold,A = C0(M) andB = C0(M,C

′(M)).

We say that the tangent bundle TM admits a spinc structure if and only if it is orientable
and δ(C
′(M)) = 0. In that case, a spinc structure on TM is a pair (ε,S) where ε is
an orientation on TM and S is a B-A-equivalence bimodule.

Following an earlier terminology introduced byAtiyah, Bott and Shapiro [4] in their
seminal paper on Clifford modules, the pair (ε,S) is also called aK-orientation onM .
Notice thatK-orientability demands more than mere orientability in the cohomological
sense. In any case, from now on we consider only orientable manifoldsM with a fixed
orientation ε, so thatK-orientability amounts to the existence of S. We note in passing
that Plymen’s approach recovers earlier work of Karrer on Clifford actions [123], [191].

What is this equivalence bimodule S? By the Serre–Swan theorem, it is of the
form �(S) for some complex vector bundle S → M that also carries an irreducible left
action of the Clifford algebra bundle C
′(M). This is the spinor bundle whose existence
displays the spinc structure in the conventional picture. We call �(S) = C∞(M, S)
the spinor module; it is an irreducible Clifford module in the terminology of [4], and
has rank 2m over C∞(M) if n = 2m or 2m+ 1.

Another matter is how to fit into this picture spin structures on M (liftings of
the structure group of TM from SO(n) to Spin(n) rather than Spinc(n)). These are
distinguished by the availability of a conjugation operator J on the spinors (which is
antilinear); we shall take up this matter in Chapter 3.

To summarize: the language of bimodules and Morita equivalence gives us direct
access to noncommutative (or commutative) vector bundles without invoking the con-
cept of a ‘principal bundle’. The concept of a noncommutative principal bundle is
certainly available – see, for instance, [107], [110], [143] and especially [7] – but here
we leave this matter aside.

1.4 The Dirac operator and the distance formula

As soon as a spinor module makes its appearance, one can introduce the Dirac operator.
This is a selfadjoint first-order differential operator D/ defined on the space H :=
L2(M, S) of square-integrable spinors, whose domain includes the smooth spinors
S = C∞(M, S). IfM is even-dimensional, there is a Z2-grading S = S+⊕S− arising
from the grading of the Clifford algebra bundle �(C
(M)), which in turn induces a
grading of the Hilbert space H = H+ ⊕H−; let us call the grading operator �, so
that �2 = 1 and H± are its (±1)-eigenspaces. The Dirac operator is obtained by
composing the natural covariant derivative on the modules S± (or just on S in the
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odd-dimensional case) with the Clifford multiplication by 1-forms that reverses the
grading.

We repeat that in more detail. The Riemannian metric g = [gij ] defines isomor-
phisms TxM � T ∗x M and induces a metric g−1 = [gij ] on the cotangent bundle T ∗M .
Via this isomorphism, we can redefine the Clifford algebra as the bundle with fibres
C
′x(M) := C
(T ∗x M, g−1

x ) ⊗R C (replacing C
 by C
even when dimM is odd). Let
A1(M) := �(T ∗M) be the A-module of 1-forms onM . The spinor module S is then
a B-A-bimodule on which the algebra B = �(C
′(M)) acts irreducibly and obeys the
anticommutation rule

{γ (α), γ (β)} = 2g−1(α, β) = 2gijαiβj for α, β ∈ A1(M). (1.4)

Here γ : A1(M)→ B denotes the action of A1(M) on H .
The metric g−1 on T ∗M gives rise to a canonical Levi-Civita connection

∇g : A1(M)→ A1(M)⊗A A1(M) that, as well as obeying the Leibniz rule

∇g(ωa) = (∇gω) a + ω ⊗ da,
preserves the metric and is torsion-free. A ‘spinc connection’ is then a linear operator
∇S : �(S) → �(S) ⊗A A1(M) satisfying two Leibniz rules, one for the right action
of A and the other, involving the Levi-Civita connection, for the left action of the
Clifford algebra:

∇S(ψa) = ∇S(ψ) a + ψ ⊗ da,
∇S(γ (ω)ψ) = γ (∇gω)ψ + γ (ω)∇Sψ, (1.5)

for a ∈ A, ω ∈ A1(M), ψ ∈ S. In the presence of a spin structure with conjugation
operator J , we say ∇S is the spin connection if it also commutes with J ; this spin
connection is unique [104, Sec. 9.3].

Once the spin connection is found, we define the Dirac operator as the composition
(−i)γ � ∇S ; more precisely, the local expression

D/ := −i γ (dxj )∇S
∂/∂xj

(1.6)

is independent of the coordinates and defines D/ on the domain S ⊂ H . The factor
(−i) is needed for D/ to be selfadjoint instead of skewadjoint, when we adopt the
positive-definite (Euclidean) convention for the Clifford relations (1.4). One can check
that this operator is symmetric; it extends to an unbounded selfadjoint operator on H ,
also called D/ . SinceM is compact, the latter D/ is a Fredholm operator and its kernel
is finite-dimensional. On the orthogonal complement of (kerD/ ) we may define D/−1,
which is a compact operator.

The distance formula. The Dirac operator may be characterized more simply by its
Leibniz rule. Since the algebra A is represented on the spinor space H by multiplication
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operators, we may form D/ (aψ), for a ∈ A and ψ ∈ H . It is an easy consequence of
(1.5) and (1.6) that

D/ (aψ) = −i γ (da)ψ + a D/ψ. (1.7)

This is the rule that we need to keep in mind. We can equivalently write it as

[D/ , a] = −i γ (da).
In particular, since a is smooth and M is compact, the operator ‖[D/ , a]‖ is bounded,
and its norm is simply the sup-norm ‖da‖∞ of the differential da. This also equals the
Lipschitz seminorm of a, defined as

‖a‖Lip := sup
p �=q

|a(p)− a(q)|
d(p, q)

,

where d(p, q) is the geodesic distance between the points p and q of the Riemannian
manifold M . This might seem to be an unwelcome return to the use of points in
geometry; but in fact this simple observation (by Connes) led to one of the great coups
of noncommutative geometry [36]. One can simply stand the previous formula on its
head:

d(p, q) = sup{|a(p)− a(q)| : a ∈ C(M), ‖a‖Lip ≤ 1},
= sup{|(p̂ − q̂)(a)| : a ∈ C(M), ‖[D/ , a]‖ ≤ 1}, (1.8)

and one discovers that the metric on the space of characters M = M(A) is entirely
determined by the Dirac operator.

This is, of course, just a tautology in commutative geometry; but it opens the way
forward, since it shows that what one must carry over to the noncommutative case is
precisely this operator, or a suitable analogue. One still must deal with the scarcity of
characters for noncommutative algebras. The lesson that (1.8) teaches [39] is that the
length element ds is in some sense inversely proportional to D/ .

The ingredients for a reformulation of commutative geometry in algebraic terms
are almost in place. We list them briefly: an algebra A; a representation space H
for A; and a selfadjoint operatorD/ on H . Additionally, a conjugation operator J , still
to be discussed; and, in even-dimensional cases, a Z2-grading operator � on H . This
package of four or five terms is called a real spectral triple or a real K-cycle or, more
simply, a spin geometry. Our task will be to study, to exemplify, and where possible,
to parametrize these geometries.
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Spectral triples on the Riemann sphere

We now undertake the construction of some spectral triples (A,H ,D;�, J ) for a very
familiar commutative manifold, the Riemann sphere S2. This is an even-dimensional
Riemannian spin manifold, indeed it is the simplest nontrivial representative of that
class. Nevertheless, the associated spectral triples are not completely transparent, and
their construction is very instructive.

The sphere S2 can also be regarded as the complex projective line CP 1, or as the
compactified plane C∞ = C∪{∞}. As such, it is described by two charts,UN andUS ,
that omit respectively the north and south poles, with the respective local complex
coordinates

z = e−iφ cot θ2 , ζ = eiφ tan θ2 ,

related by ζ = 1/z on the overlap UN ∩US . We write q(z) := 1+ zz for convenience.
The Riemannian metric g and the area form � are given by

g = dθ2 + sin2 θ dφ2 = 4q(z)−2 dz dz = 4q(ζ )−2 dζ dζ,

� = sin θ dθ ∧ dφ = 2i q(z)−2 dz ∧ dz = 2i q(ζ )−2 dζ ∧ dζ.

2.1 Line bundles and the spinor bundle

Hermitian line bundles over S2 correspond to finitely generated projective modules
over A := C∞(S2), of ‘rank one’; these are of the form E = pAn where p = p2 =
p∗ ∈ Mn(A) is a projector of constant rank 1. (Equivalently, E is of rank one if
EndA(E) � A.) It turns out that it is enough to consider the case p ∈ M2(A). We
follow the treatment of Mignaco et al. [160]; see also [104, Sec. 2.6].

Using Pauli matrices σ1, σ2, σ3, we may write any projector inM2(A) as

p = 1

2

(
1+ n3 n1 − in2
n1 + in2 1− n3

)
= 1

2 (1+ �n · �σ)

where �n is a smooth function from S2 to S2. Any homotopy between two such functions
yields a homotopy between the corresponding projectors p and q; and one can then
construct a unitary element u ∈ M4(A) such that u(p ⊕ 0)u−1 = q ⊕ 0. Thus
inequivalent finitely generated projective modules are classified by the homotopy group
π2(S

2) = Z, the corresponding integer m being the degree of the map �n. If f (z) =
(n1 − in2)/(1 − n3) is the corresponding map on C∞ after stereographic projection,


