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FOREWORD

The following lecture notes correspond to a course taught for several years,
first at the University of Paris-Nord (France) and then at the University of
Bologna (Italy). They are mainly addressed to non specialists in the subject,
and their purpose is to present in a pedagogical way most of the techniques used
in the microlocal treatment of semiclassical problems coming from quantum
physics. Both the standard C'*° pseudodifferential calculus and the analytic
microlocal analysis are developed, in a context which remains intentionally
global so that only the relevant difficulties of the theory are encountered. The
main originality lies in the fact that we derive all the main features of analytic
microlocal analysis from a single a priori estimate, which turns out to be
elementary once the C* pseudodifferential calculus is established.

Various detailed exercises are given at the end of the main chapters, most
of them being easily solvable by students. Beside illustrating the main results
of the lecture, their aim is also to introduce the reader to various further
developments of the theory, such as the functional calculus of pseudodifferential
operators, properties of the analytic wave front set, Gevrey classes, the use of
coherent states, the notion of semiclassical measures, WKB constructions, etc

Applications to the study of the Schrédinger operator are also discussed
during the text, so that they may help the understanding of new notions or
general results where they appear by replacing them in the context of quantum
mechanics. We invite the reader who wishes to find these applications easily
to refer to the index which we have tried to make as complete as possible.

The prerequisities are essentially reduced to the basic notions of the theory
of distributions.
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Chapter 1

Introduction

1.1 A Short Review of Classical Mechanics

In this section and in the following one our aim is only to give a slight flavor of
the process which has led the physicists to change completely their conception
of reality by passing from classical mechanics to quantum mechanics. For
a much more detailed presentation of this, we refer the reader to the very
complete book [Mes| by A. Messiah. Interesting information can also be found
in the book [Ro] by D. Robert (which is actually closer to our point of view),
and in the classical book [LaLi] by L.D. Landau and E.M. Lifshitz. (Indeed,
a large literature - in any language - exists on the foundations of quantum
mechanics, and many more references can be found than we can give here.)

In classical mechanics, a particle of mass m is represented by its position
at time ¢, that is by a function ¢ — =z(t) € R3. If this particle is submitted to
a conservative force field F' = —VV | then its movement is ruled by Newton’s
fundamental law:

F = mi(t) (1.1.1)
or equivalently

#(t) = —%vv (2(8)) (1.1.2)

where the dots stand for differentiations with respect to t. If we set (t) =
ma(t) (the so-called momentum or impulse of the particle), then (1.1.2) can

5



6 CHAPTER 1. INTRODUCTION

be rewritten as

£t) = —VV (a(1))
i(t) = —€(t)

m
which is called the system of Hamilton’s equations. The curve t — (x(t),£(t))
is then called the phase space trajectory or classical trajectory of the particle,
and lies in R? x R? which should be viewed as the product of the space of
positions and momenta.
The (total) energy of the particle is defined by

(1.1.3)

E= %5(15)2 +V(x(b). (1.1.4)

The main feature of the energy is that it is independent of #: indeed one has

d /1 9 R Lo
¥ (%g@) + V(x(t))) — mi(8).&(8) + VV (@(1)).3(t) = 0
where the last equality is a direct consequence of (1.1.2). Note that the energy

of the particle is just the value at (x(t),&(t)) of the so-called energy observable
%62 + V(z).

More generally, one calls a classical observable any real smooth function
a = a(z, &) defined on the phase space R®*xR?: its value at the point (x(t),£(t))
gives information about the particle at time ¢. In particular, any physical
experiment concerning the particle should lead to quantities which can be
described by such values of classical observables.

However, it turns out that in several experiments (such as the photoelectric
effect and the diffraction of particles: see [Mes, Ro|), properties in contradiction
with this classical model of mechanics have appeared. The most well known
are the facts that the energy of a particle can take values only in a discrete
subset of R, and that one cannot know at the same time the precise values
of both the position and the momentum of the particle: this is the famous
Heisenberg uncertainty principle, which asserts that the errors Ax and A&
made in a measurement of the position and the momentum always satisfy

h
AE> — 1.
Ar.AE> - (1.1.5)

where h is the Planck constant whose value is approximately 6.6 x 1073* J/s.
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These observations have led physicists to believe in a kind of double nature
of elementary particles, both wave-like and corpuscular. After a first attempt
in 1923 by De Broglie [DeB] to include such observations in a mathematical
model (the so-called Matter Waves which generalizes to matter the double
aspect - wave-like and corpuscular - previously observed for the light), it is
now commonly admitted that a very general and acceptable model is given by
another theory of matter: Quantum Mechanics introduced in two equivalent
forms around 1925: by M. Born, W. Heisenberg and P. Jordan (the Matriz
Mechanics: see e.g. [BoHelJo|), and by E. Schrédinger (the Wave Mechanics:
see [Schrl, Schr2]). About the links between these two presentations, one may
consult e.g. [VAW] and references therein.

1.2 Basic Notions of Quantum Mechanics

In quantum mechanics, a particle is described by a function R x R? 3 (t, ) —
Y(t,z) € C which is called the wave function of the particle. The wave function
must be such that for any ¢ € R, the function ¢y : = — (¢, z) belongs to
L?(R?), and ||¢]|z2rs) = 1. The function 1y is called the state of the particle
at time t.

The natural interpretation attached to ¥(t,z) is to view [i(t,z)|* as a
density of probability: it describes the probability of presence of the particle
at the point = at time ¢.

The average position of the particle at time ¢ is defined in a natural way as
the quantity

‘ 2

(T)g, = <$¢t>¢t>L2(R3) = ((%’M;%)LZ(RB)) (1.2.1)

j=1,2,3 "

An average itmpulse can also be defined, but its understanding requires an
analogy with a plane wave given in Optics by a function of the type

o(t, ) = Aetke—wt) (1.2.2)

w .
where v := — represents the frequency, and k& € R3 is called the wave vector:

the wave propagates along the direction of £, in the sense that ¢ is independent,
of x on any plane {z.k = constant}. As a consequence, it is natural that any
acceptable definition of the impulse of such a wave must satisfy:

E=ak
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for some positive constant a. Actually, the so-called De Broglie relation (de-
rived from considerations on free wave-packets: see e.g. [Mes]) gives

§=nhk (1.2.3)

h
where A := - is the reduced Planck constant. Using (1.2.2) and (1.2.3) we

get in particuirar:
h -
== [Vaplt:2)] ot 2)/| AP (1.2.4)

It is precisely relation (1.2.4) which provides a way to define by analogy the
average impulse of the quantum particle described by (¢, z). Viewing |A|? in
(1.2.4) as a normalization factor, one sets:

h h O
<£>'€bt = <_-v¢tawt>L2(R3) = <_.—t,¢t>L2(R3) (1.2.5)
7 i 0z o3
] 1
whenever it is defined (e.g. if 1y € H'(R3), the usual Sobolev space).
At this point it is useful to make a connection (which will be essential in
the sequels) between (1.2.5) and an equivalent way of writing (), by using
the so-called h-Fourier transform of i;:

Fre(§) = 77275(6) = W

The h-Fourier transform F is an isometry of L*(R?), and if ¢, € H'(R?) one
has the relation:

/e‘mg/hwt(a:)dx. (1.2.6)

h
Fh <?V¢t> (&) = EFnthe ().
As a consequence, (1.2.5) can be rewritten as

(E)we = <€7Zta12;t>L2(R3) (1.2.7)

so that it assumes a form more similar to (1.2.1).

Here we observe that the “wave-corpuscule” duality of a quantum particle
is mathematically given by the correspondence between 1;(x) and (&) via
the hA-Fourier transform, in the sense that the average impulse of v equals
the average position of ¢y and vice versa. Moreover, the classical quantities
x and £ can be considered in quantum mechanics, only via the two following
operators:

T Y= ayY
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for the position, and
h
hD, : ¢ — =V
7

for the impulse. Note that these two operators are symmetric with respect to
the L2-scalar product, and are actually self-adjoint with respective domains
Frn(H'(R?)) and H'(R?). More generally, any (not necessarily bounded) self-
adjoint operator on L?(R?) is called a quantum observable.

Now, the situation is the following: we have been able to associate with the
classical observable x the quantum observable 1 — x1, and with the classi-
cal observable ¢ the quantum observable hD,. Now a natural question arises:
whether such a correspondence between classical observables and quantum ob-
servables can be generalized. Namely, given a classical observable a(zx,¢), is
there a natural way to associate with it a quantum observable (that could
reasonably be denoted a(z,iD,)). This is precisely one of the purposes of the
pseudodifferential calculus, which also provides an algebraic correspondence
between the space of classical observables endowed with the usual multiplica-
tion, and the space of quantum observables endowed with the composition of
operators.

Of course, there are cases where this correspondence can be demonstrated
in a very simple way: if a = a(x) does not depend on &, then the natural
associated quantum observable is just the multiplication by the function a:
Y +— at). Similarly, using the fact that AD, = F, '¢F; (where £ denotes the
operator of multiplication by ), in the case when a = a(&) does not depend
on z, the associated quantum observable is a(AD,) := F; 'a(£)F;. Note that
this last definition is consistent with the usual one when a(¢) is a polynomial
in ¢ (in which case one obtains a differential operator).

Examples -

2

1
1. The kinetic energy —&* gives rise to the quantum observable ——A
2m 2m

where A = Z?Zl 85], is the Laplace operator ;
1, _ , R

2. The total energy —¢&* + V(x) is associated to H = ——A 4 V(x),

2m 2m

which is the celebrated Schrodinger operator.

Since the physical phenomena essentially consist in exchanges of energy,
the study of the operator H is of particular interest in quantum mechanics.



10 CHAPTER 1. INTRODUCTION

The possible energies of a quantum particle submitted to the electric potential

V' are by definition the eigenvalues of H considered as an operator acting on
L*(R3).

Quantum evolution -

In classical mechanics, Newton’s law (1.1.1) permits us to predict the evo-
lution of a particle once we know its initial position and momentum. The
quantum counterpart can be derived by again using the analogy with Optics.
From (1.2.2) we get

Oy
igy =W

and by the so-called Planck-Einstein formula (initially obtained experimentally
for light, but then generalized to matter by De Broglie in his theory of Matter
Waves: see e.g. [Mes]), the energy of the wave is given by

F = hv = hw.
As a consequence, ¢ satisfies:
d¢
h— = Eo. 1.2.8
iho =By (1.2.8)

Since in quantum mechanics the energy is represented by the operator H, it
becomes natural in view of (1.2.8) to require that the evolution of a quantum
state is given by the equation

Loy
zhﬁ =Hyp (1.2.9)

which is called the Schrodinger equation.

Until now we have dealt with a single quantum particle only. In the case
when several (say N) particles are involved in the system that one wants
to study, all the previous considerations can be easily generalized by instead
denoting x = (x',...,2"V) € R3" for the set of all the particles, and taking into
account that the potential V(x) must be the sum of the external electric field
plus all the interactions between the various particles.



1.3. SEMICLASSICAL ANALYSIS 11

1.3 Semiclassical Analysis

As one can guess, the mathematical study of the Schrodinger operator H can
be very difficult in general, depending on the potential V' which is involved. As
a consequence, one would like to dispose of any kind of approximation physi-
cally reasonable, allowing us to predict (at least qualitatively) many quantum
properties of a system. Moreover, since classical mechanics (which in many
aspects is much than quantum mechanics) describes very well (up to some ac-
curacy) most of the common elementary physical phenomena, it is reasonable
to hope that quantum mechanics is a kind of generalization of classical me-
chanics, in the sense that one should be able to recover the classical properties
of a system by making some approximation of its quantum properties.

A general principle exists which permits us to give an answer to the two
previous questions: the so-called Bohr correspondence principle asserts that
classical mechanics is nothing but the limit as h tends to 0 of quantum me-
chanics.

Although this statement remains rather vague, it appears that in many
instances it can be both specified and verified. The mathematical branch in
which this is performed is commonly called semiclassical analysis, and its task
consists principally in studying the spectral properties of H asymptotically as
h — 0 (that is for A > 0 small enough, without worrying about its actual
physical value). However, due to its asymptotic character, semiclassical anal-
ysis also allows us to prove mathematically some typical quantum properties,
which would be much more difficult to show by taking h fixed (and which are
annihilated when the limit A — 0 is taken).

An essential tool of semiclassical analysis consists of the use of the so-
called pseudodifferential calculus, that we develop in the next sections. Ac-
tually, it may be applied in many other fields such as: the study of the
singularities of solutions of partial differential equations (for which it has
been initially developed: see e.g. [AlGe, Bel, ChPi, Ho2, KoNi, Sj1, Tr]);
the Born-Oppenheimer approximation (used to study the quantum properties
of molecules with heavy nuclei: [KMSW]); adiabatic theory (which studies
slow varying systems, [Ju, Mar2]); solid state physics ([GRT, GMS]); scat-
tering theory ([En, SiSo]) and many other aspects of spectral theory or else
([CdV, DiSj, Fo, GrSj, Hel, He2, Iv, Mas, Ro, Sh, Tal, ...). Let us stress that
in most of these fields A is not the Plank constant, but may represent different
physical quantities such as: the inverse of the square root of the nuclear mass
(in the Born-Oppenheimer approximation); the adiabatic parameter (in adia-
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batic theory); the magnetic field strength (in solid state physics); the inverse
of the square root of the energy (in high-energy spectral problems); or even
the inverse of the norm of the position (in scattering theory).

1.4 About History

The history of microlocal analysis goes back more than forty years, and since
a large number of mathematicians have contributed to the subject, it is quite
difficult to describe with precision all the lines of its development. However, the
interested reader may find a rich source of information in the historical notes
that follow each chapter of the series of books [Ho2] by L. Héormander. Here
we mention that most of the motivation of our notes comes from techniques
developed by J. Sjostrand in [Sj1], and one of our purposes is to give a simplified
and unified presentation of them. This has been made possible due to our
observation that in a global context, the exponential microlocal estimates that
we introduce in Chapter 3 (and that are quite elementary to prove) permit us
to get rid of the rather heavy and difficult pseudodifferential calculus in the
complex domain introduced in [Sj1]. Doing this, we believe that the main ideas
of the proofs in [Sj1] appear in a more enlightened and clearer context which
should allow a better appreciation and understanding of them.



Chapter 2

Semiclassical Pseudodifferential
Calculus

2.1 Motivations and Notations

As we have already explained, one of the main motivations of the pseudodif-
ferential calculus is to get an algebraic correspondence between the classical
observables and the quantum observables (one calls it a quantization of the
classical observables). In particular, this would permit to localize (within the
limits allowed by the uncertainty principle) both in position and momentum
variables any quantum state 1: take a smooth cut-off x = x(z, ) € C$°(R*),
then its associated quantum observable x(z,”D,) applied to ¢ will ‘have the
effect of (essentially) cutting off the cartesian product Suppt x Suppt) outside

Suppy.

Another important feature of this calculus will consist in inverting the so-
called elliptic operators: if a(z,§) is a classical observable which never vanishes
(and therefore is invertible in the multiplicative algebra of smooth functions),
one would like to be able to invert also its quantization a(z,AD,). This proce-
dure (called the construction of a parametriz) will be possible when a satisfies
a little bit more: namely that it is an invertible element of a special kind of
subalgebras of C°(R"), called spaces of symbols (see the next section).

Many other properties are satisfied by the pseudodifferential operators,
and we shall certainly not be exhaustive in these lectures, our purpose being to
make understand how the things work and to show examples where they can be
used. However there is another application that we only want to mention here,

13
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and which is at the center of a whole field of interest in semiclassical analysis
around the so-called Weyl formula: the pseudodifferential calculus permits to
approximate some spectral projectors associated to the Schrodinger operator.
We refer to the excellent book of Shubin [Sh] for a detailed approach of this
problem.

Now, let us fix some standard notations that will be used all along this
book.
If x = (x1, ..., z,,) denotes the current point of R™, we set:
10 1 1 1,0 0
Da:_____va::_ T — “\3_ 1A
) (axl 8xn)

10 i 1
=2t +2d ;o) = Va2

n

and, for a = (ay, ..., a,) € N™:

la] = a1 + ... + ay

al = (aq!)...(a!)
o =zt
Dy = Dg..Dgr

a __ Qo Qp,
9% = 9%..90

(although the two notations |z| and |«| are incoherent since N™ C R™, we use
them because they are very traditional, and actually their meaning will always
be clear from the context). We also denote zy = x-y = (x,y) := z191+...+T0 s
the standard scalar product between the two vectors x = (21, ...,x,) and y =
(Y1, -, Yn) of R™. Finally, we recall the very useful multidimensional Leibniz
formula, valid for any C'*° functions f,g on R™ and for any oo € N™:

o! _
5§(f9) :%m(aff)(ag Bg) (2.1.1)

where 3 < o means by definition that §; < ¢ for all j € {1,...,n}.

2.2 Spaces of Symbols

Roughly speaking, what we call symbols from now on is what we have called
classical observables until now. In these lectures we concentrate on some re-
stricted classes of symbols, in the double sense that they will always be globally
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defined, and that they will satisfy estimates of a special kind. More general
estimates could also be treated, as well as locally defined symbols, but the fact
is that most of the difficulties of the theory are already encountered with our
simpler classes, so that the reader will in any case learn all the basic techniques
of microlocal analysis, without having to care about additional problems which
could have the effect of obscuring the concepts (which in some sense remain
always relatively simple below the technical discussion). For a very general
presentation of the theory, one may e.g. consult the very complete series of
books of Hérmander [Ho2].

Let ¢ € C*°(R%R?) (the space of C* functions on R? with values in
R* = (0, 00)) satisfying for any o € N

939 = O(g) (2.2.1)

uniformly on R% Such a function is called an order function on R¢, and the
simplest examples are given by

(@) = (1 + [Py

where m € R is fixed and 2’ = (x1,...,x,) with £ < d. Other examples are
functions such as e*?®) with o € R, or more generally e/(®) where f is smooth
and bounded together with all its derivatives. However, a function such as
¢*’ is not an order function, and neither is any function greater than it (see
exercise n.1 at the end of this chapter).

Note that although we have denoted z € R? the variable of g, in practice
we shall almost always have d = 2n and z replaced by (z,&) representing
the position-momentum variables. In fact, we shall sometimes also deal with
d = 3n and x replaced by (z,y, &) where the extra variable y plays the role of
an integrated variable, in a similar way as when one expresses the distribution
kernel of an operator as a function of (z,y).

A first property of this notion of order functions is:

Proposition 2.2.1 If g is an order function on R%, then so is the function

g

Proof - This is an easy consequence of the Leibniz formula (2.1.1). Indeed,
one has to show that for any a € N% 9%(1/g) = O(1/g). Denoting g = 1/g
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and using the Leibniz formula to differentiate o times the identity gg = 1, the
required estimate is easily obtained by induction on |a|. o

For such an order function g we define the semiclassical space of symbols
Sa(g) by:

Definition 2.2.2 A function a = a(x;h) defined on R% x (0, hg] for some
ho > 0 is said to be in Sq(g) if and only if a depends smoothly on = and for
any o € N¢, one has:

da(w;h) = O(g()) (2:22)
uniformly with respect to (z,h) € R% x (0, hy).
In particular, Sq(1) is the set of families of C* functions on R? parameterized

by some h € (0, hg], which are uniformly bounded together with all their
derivatives.

Examples -

. Any y € C$°(RY) (the space of compactly-supported C* functions on
RY) is in Sg(1) ;

. IfV =V(x) € Sy(1), then the function &2 + V() is in Sy, ({£)?). Note
that it corresponds to the total energy (with mass 1/2) defined in Section
1.2

. For any m € R, (x)™ € Sy({(x)™) ;

. The function R*™ 3 X = (z,£) — €®¢ does not belong to S, ((X)™) for
any m € R, but belongs to any Sa,(e**)) with £ > 0.

. The functions e **/" and ¢* do not belong to S, (g) for any order function

g on R™ (just take the value at = 0 of the Laplacian of the first one,
and see exercise n.1 of this chapter for the second one).

Note that by Proposition 2.2.1 and Leibniz formula, we have the equivalence:

a € Sulg) & g € S,4(1). (2.2.3)

We endow S;(g) with the topology associated to the family of semi-norms
N, (a) = Sup|0®al, and it can be verified easily that this makes S;(g) a Frechet
space. The basic algebraic properties of the spaces S;(g) are the following ones.
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Proposition 2.2.3 Let g, and g, be two order functions on R?, and let a €
Sa(g1), b € Sq(g2). Then g1go is also an order function, and ab € Sy(g192)-

Proof - This is an obvious consequence of Leibniz formula. o
Defining the ellipticity as:

Definition 2.2.4 A symbol a € Sy(g) is said to be elliptic if there exists a
positive constant Cy such that
1

>
la| > a9

uniformly on R x (0, hg] (for some hy > 0),

then we have:

1 1
Proposition 2.2.5 If a € Sy(g) is elliptic, then — € Sy (—)
a g

1
Proof - Denote b = —. Then the result is obtained by differentiating iteratively

a
the relation ab = 1 and by using Leibniz formula. o

2.3 Semiclassical Expansions of Symbols

In this section we try to specify a little bit more the way in which the sym-
bols may depend on the semiclassical parameter h. First of all we define the
notation ~ (the so-called asymptotic equivalence of symbols) that will be used
very often in the sequels. All along this section, g denotes an arbitrary order
function on R¢.

Definition 2.3.1 Let a € Sq(g) and (a;);on @ sequence of symbols of Sa(g)-

o0
Then we say that a is asymptotically equivalent to the formal sum Z h?a;
j=0
in Sq(g), and we denote

w .
Jo.
aNZh a;
=0
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if and only if for any N € N and for any o € N¢ there exist hy, > 0 and
Cn,a > 0 such that

N
9% la—Y_Wa; || < Cnoahg
§=0
uniformly on R x (0, hy a)-
N .
In other words, for any N > 0 the symbol a can be approximated by Z ha;
j=0

up to a symbol which vanishes together with all its derivatives as A" when h
goes to zero. In practice, the existence of hy, will not be explicitly written,
being referred as to “for h small enough” at the end of an estimate. It will
then be implicit that the estimate is valid for A in an interval of the form (0, Ao
where hy depends of all the fixed parameters.

In the particular case when all the a;’s are identically zero, we denote:

a=O(h®)in Sy(g) iff a~ 0in Sy(g).

An important and surprising feature is that, although a series of the type
o

Z I a; has no reason to be convergent, one can always find a symbol which
=0
is asymptotically equivalent to it:

Proposition 2.3.2 Let (aj)jeN be an arbitrary sequence of symbols of Sq(g).

Then there exists a € Sy(g) such that a ~ > K a; in Sy(g). Moreover, a is
=0

unique up to O(h®), in the sense that the difference of two such symbols is

O(h*) in Si(g). Such a symbol a is called a resummation of the formal

symbol > ha;.

320

Proof - First of all, dividing everything by g and using (2.2.3), we can assume
without loss of generality that g = 1.

Since the unicity up to O(h™) is obvious, we concentrate on the existence
of a. Then let x € C§°(R) be such that Suppx C [—2,2], x = 1 on [-1,1].
We have:
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Lemma 2.3.3 There exists a decreasing sequence of positive numbers (6]-)].6N

converging to zero, such that for any j € N and o € N? with |a| < j, one has:

SupzeRd

(1 - (#)) 8% a(a; h)‘ <ht
for h small enough.

Proof - Denoting

Cj = Sup|4<;SUP,era [0%a;j(z; h)|

and using the fact that (1 — X(%)) is non zero only for h < ¢;, we have:

hSup,cra

(1 _ X(%)) 8% (; h)‘ < Cje; <1

1
if one has chosen the decreasing sequence (g;),>0 in such a way that ¢; < —

Cj
for all j > 0 (one can take e.g. &; = min{(k+ Cy)™'; k < j}). o
We then set:
=Y p (1 - h)) a;(w: h)
7>0

where actually the sum contains only a finite number (depending on h > 0
fixed) of non zero terms (since €; < h if j becomes too large). Thus a is a
smooth function of € R%, and for any oo € N one has:
. . o
oaai)| < X Wotay(a ) + 3 W |(1= x(2)) 0%; a5 )|

i<lel i>lal

and therefore, using Lemma 2.3.3:

0%a(z;h)| < Co+ Y W< G,

Jj>la

where C, and C/, are positive constants.
Thus a € Sy(1), and for any o € N? and N > || one has:

o° (a—éhja]) + 2 w|(1-x) ora).

J>N+1

0%a;
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Using again Lemma 2.3.3, we get:
N .

9" la—>_ hla;
j=0

where the Cj,’s are positive constants. Since the function R 3 ¢ — tVx(¢) is

bounded, we deduce easily from the estimate above that there exists a constant
Cy such that for any h > 0 sufficiently small:

al N+j_—N |[(Ei\N_ (Ej
<Y R (E) X(ﬁ)

j=0

Cia+ Y. KW

J2N+1

N
80‘ a — Z hjaj S CNhN
j=0
which completes the proof of Proposition 2.3.2. o

Remark 2.3.4 One can generalize the previous notion of equivalence by re-
placing h? everywhere it appears by h™, where m; € R satisfies: m; — +00
as j — 4o00. Then one can prove in the same way an analogous result of
resummation.

Remark 2.3.5 In the previous proof, we never used the fact that the a;’s
are globally defined on R%. Indeed, a corresponding result for locally defined
symbols is easy to state and to verify.

Application: WKB Solutions for the One Dimensional Schrodinger
Operator - Let V € C®(R ;R) and E € R, and let 9 € R be such that
V(xg) < E. Then, for z close enough to xg, one can consider the two smooth

functions: .
pr(x) =% | JE-V(y)dy
T

which both satisfy (¢/,)? = F — V (the so-called eikonal equation). In partic-

ular, ¢/, # 0 near xy and thus 4/|¢’| is smooth there. Then, for any a = a(z)
smooth near xy, one has:

d? ‘

_p2 = _ io+/h

( etV E>(a€% )
ottt (v — )
= —ih [Qa'SOIi + ap!, — iha"] glox/h

! n
= —2ihy/ ¢y [(a\/(p’i> — ihai] elex/h

2,/¢s



